
INTELLIGENT  TARGET  DETECTION IN HYPERSPECTRAL  IMAGERY 

Ayanna Howard, Curtis Padgett, Kenneth  Brown 
Jet Propulsion Laboratory, California Institute of Technology 

4800 Oak Grove Drive, Pasadena, CA 91 109-8099 

ABSTRACT 

Many applications that  use hyperspectral imagery focus on detection and recognition of targets 
that occupy a portion of a hyperspectral pixel. We address the problem of sub-pixel target detection by 
evaluating individual pixels belonging to a hyperspectral image scene. We begin by clustering each pixel 
into one of n classes based  on the minimum distance to a set of n cluster prototypes. These cluster 
prototypes have previously been identified using a modified clustering algorithm based on prior sensed 
data. Associated with each cluster is a set of linear filters specifically designed to separate signatures 
derived from a target embedded in a background  pixel from other typical signatures belonging to that 
cluster. The filters are found using directed principal component analysis which  maximally separates the 
two groups. Each pixel is projected on  this set of filters and the result is fed into a trained neural network 
for classification. 

A detailed description of our algorithm will  be given in  this paper. We outline our methodology 
for generating training and testing data, describe our modified clustering algorithm, explain how the linear 
filters are designed, and provide details on the neural network classifier. Evaluation of the overall 
algorithm demonstrates that for pixels with embedded targets taking up no more  than 10% of the area, our 
detection rates approach 99.9% with a false positive rate of less than 

1 .O INTRODUCTION 

The use of multi-spectral imaging  systems in such areas as geology, meteorology, and defense has sparked an 
interest for the development of innovative automatic detection and classification schemes. Various techniques have 
been developed in order to effectively address this issue. Kim et a1 [Kim,91] used a decision tree classifier in order 
to sort various hyperspectral signatures into numerous classes using  as  few features as possible. Jia et a1 [Jia,94] 
grouped hyperspectral data into groups based  on  maximum likelihood classification. Yu et a1 [Yu,97] detected 
known low-contrast objects in a nonstationary background  using a generalized maximum-likelihood ratio principal. 
Sabol et a1 [Sabo1,92] quantified the conditions necessary for sub-pixel spectral detection. Harsanyi et a1 
[Harsanyi,94] used orthogonal subspace projection to reduce the dimensionality of the hyperspectral imagery. 

Some of the main limitations with these techniques are the processing time requirements for sub-pixel detection 
and the compromise between a low false alarm vs. detection rate. Due to  the  high dimensionality of hyperspectral 
imagery, an optimal number of spectral bands must  be extracted which  have the greatest ability to discriminate 
embedded targets from typical background pixels. The larger the number of bands utilized, the longer the processing 
time required, and the less “real-time” the process becomes. In addition, a low false positive rate coupled with a 
high detection rate is essential, especially in such areas as  military target detection were wide area surveillance 
(many thousand of spectra) is needed. In these tasks, a very  low false positive rate is desired to increase the 
confidence that the targets identified are real. 



Our research objective is to develop an algorithm for autonomous detection of sub-pixel target objects 
embedded in hyperspectral data. The evaluation of these algorithms is based on inserting actual target signatures into 
real scenes of hyperspectral images. The scenes used are generated by the Airborne Visible ln f r aed  Imaging 
- Spectrometer (AVIRIS), an optical sensor which generates 224 bands of spectral information for each pixel, with 
each pixel covering a 20 m2 surface area. 

The target data inserted into the  background  was extracted from the Forest Radiance I experiment provided by 
SITAC. This database contains reference signatures for a number of military targets, which  we shall call our target 
set. The scenario we are examining involves examining  ground images from AVIRIS to determine if the spectral 
signature from any of the 20 m2 pixels contains, as a constituent element, a member of the given target set. In real 
time, we will reduce the data dimensionality of a scene using  an optimal set of linear filters and spatially locate 
targets in the scene with a neural network classifier. Figure 1 provides an overview of our approach for detecting a 
known set of targets in a hyperspectral image. The rest of this paper describes the methodology used to investigate 
sub-pixel target detection in detail. 
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Figure 1 : The data processing path for each pixel from the sensed image. 

2.0 TECHNIQUE 

2.1 AVIRIS DATA AND TARGET DESCRIPTION 

The Airborne Visible lnf raed  Imaging Spectrometer (AVIRIS) is an optical sensor that delivers calibrated 
images of the upwelling radiance in 224 spectral channels, or  bands,  with  wavelengths from 400-2500nm. AVIRIS 
collects spectra sequentially by using a whiskbroom scan mechanism. The radiance from an approximately 20 m2 
patch on the ground is dispersed thru four grating spectrometers to obtain a spectrum consisting of 224 channels 
[Vane,93]. The AVIRIS data is inverted to units of spectral reflectance using a radiative transfer model estimate of 
atmospheric path radiance and reflected radiance [Vane,93]. We thus classify a background pixel b as a vector of 
224 bands, representing the spectral reflectance data from a 20 m2 ground patch area. Due to the atmospheric 
correction routines, some of the 224 bands of spectral reflectance data do not possess any interesting (or valid) 
information. We thus default these bands to zero before they are processed by our algorithm (Figure 3). 

The hyperspectral image scenes used  in  this research effort are taken from the Cuprite (Fig. l), and  ARM (Fig. 
6) sites. Target spectra were obtained from ground  truth  measurements conducted at the FR1 experiment. These 
measurements give us target spectra data which  must  be transformed into reflectance data for import into our 
algorithm. This is accomplished by comparing target spectra to a known reflectance standard. The reflectance of the 
target is determined by computing the ratio of the signals between target T and the known standard S multiplied by 
the reflectance of the standard R, (Fig. 2). 



1 :: 

9 4 5  I , , ,  , 1 1 4  8 . 7 ,  , 6 9 1  , ' I O  1 0 . 0  I * , (  l l 7 .  

v ...I.. , a .  

Figure 2. Average target signatures obtained from the FR1 experiment. 
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Figure 2. Average target signatures obtained from the FR1 experiment. 

Passing the target spectra through this equation gives  us the target reflectance data, a 224 vector band  of information, 
which we refer to as the target signature. 

In order to mix targets into an AVIRIS scene, we form the composite signature: 

x*t + (1-x)*b+n (1) 

where x is the fractional mixing level, t is the target signature, b is a pixel belonging to a typical Aviris scene, and n 
is randomly generated zero mean Gaussian noise. 

B a n d  

Figure 3. Randomly  sampled  background pixels (black) and targets mixed at 10% 
(white) drawn from the same cluster. 

Figure 3 gives a comparative example of randomly drawn background pixels belonging to a single cluster 
versus an embedded 10% target signature mixed  with background pixels drawn from the same distribution. As 
shown, separating the mixed target examples from the background elements is an extremely difficult task. The next 
section describes our approach for detecting the target elements as shown  in Figure 3. 

2.2 ALGORITHM DESCRIPTION 

Given a set of targets T, the goal of the algorithm is to detect, in real time, any target t E T present in any pixel 
belonging to a hyperspectral scene. We begin by clustering the pixels belonging to a hyperspectral scene into one of 
n classes based on its distance to a set of n cluster prototypes. These cluster prototypes have previously been 
identified using a modified clustering algorithm based on prior sensed data. Associated with each cluster is a set of 



linear filters specifically designed to separate signatures dervied from a target embedded in a background pixel from 
other typical signatures belonging to that cluster. Each pixel is projected on this set of filters and the result is fed 
into a trained neural network for classification. 

In order to accomplish this task, knowledge must  be extracted through the following preprocessing steps: 

1) Identify a set of background cluster prototypes used  to segement the hyperspectral scene. 
2) Derive a set of linear filters for each background type used  to optimally separate targets embedded in 

3) Train a set of expert neural network classifiers that receive as input the corrected pixels projected on their 
background pixels from other typical background pixels. 

respective linear filter set and respond with 1 when targets are embedded in the pixels and -1 otherwise. 

2.2.1 Clustering 

To effectively simplify the distribution of data classified by an expert neural network, we partition the incoming 
pixel signatures into a number of predetermined groups by using the prototypes Pi of a clustering algorithm. The 
clustering algorithm is run on previously aquired data that reflects the distribution of the scene being analyzed. 

The clustering algorithm employed is  a modified  version of a standard clustering technique outlined in Duda and 
Hart [Duda,73]. The standard algorithm uses a standard least squares criterion to minimize the distance between each 
of n randomly selected groups. These groups are initially constructed by selecting typical background pixels and 
randomly distributing them among each group. The criterion minimized by the standard clustering algorithm is: 

where i is one of n clusters and pj is a pixel in  that cluster. The clustering algorithm iterates through each pixel and 
determines if moving the pixel to another group reduces the overall cost. If it does, the pixel is moved to the other 
group and the associated averages of each prototype cluster are recalculated. This continues until the moving of 
pixels no longer reduces the overall cost. The resultant cluster prototypes are then employed by our algorithm to 
segment the scene. 

The clustering algorithm, as described, is independent of the detection problem. It does not take into account 
any information that we might have concerning the target set. The distribution size of clusters that contain 
backgrounds which closely resemble targets could  be quite wide,  thus  making it more difficult to detect target pixels 
in them. As targets are typically camouflaged to resemble the background, this is a potentially serious problem. 
Similarly, it makes little sense to have narrow distributions for clusters whose background elements highly contrast 
with the targets, thus making them easier to detect. What is needed are clusters with  narrower distributions for 
backgrounds that resemble targets in our set and  wider distributions for those backgrounds that contrast with them. 
To accomplish this, we modify the criterion given  in (2) to reflect target knowledge. The change in (2) consists of 
simply weighting each pixel by a term reflecting its closeness with elements in the target set. The modified criterion 
is given by: 

where 

and t,  is an element of T, the target set. Pixels that are close to targets will  be  weighted more in the cost of the 
clustering algorithm than those further away, allowing the clustering algorithm to naturally provide more resource 
groups to those background types. 



2.2.2 Filter Sets 

The filtering step is an orthogonal sub-space projection of each pixel. It is used  to optimally linearly separate 
the embedded target background pixels of each group from those pixels without targets. This is a standard technique 
used to reduce the dimensionality of the pixel (from 224 to 32 dimensions) while preserving as much of the signal as 
possible. The filters associated with a given prototype are derived from the distribution of its background pixels 
(noise) and the distribution of potential targets embedded in  that  background (signal). These two groups can be 
optimally separated to maximize the signal to noise ratio between  them  using directed principal components analysis 
(DPCA). 

To characterize the distribution for cluster i, the covariance matrix, Ri, is found for background pixels 
belonging to the cluster which do not contain targets and the covariance matrix, Si, is derived for those pixels mixed 
with target signatures. We are interested in finding a set of orthogonal basis vectors Wi, that maximizes the expected 
signal to noise ratio of these two distributions. The generalized eigenvector solution: 

accomplishes this. The set of filters defined by Wi is the directed components used in our algorithm to steer the 
eigenvector solution away from dimensions of high  noise variance in a linearly optimal fashion. 

2.2.3 Classification 

The next step in our algorithm involves classifying each pixel’s projection on Wi with a neural network. The 
networks are trained with data drawn from the  two distributions used to determine Wi, Ri and Si. The expert network 
for class i is required to respond with 1 for elements drawn from Si and -1 from those drawn from Ri. We use a 
simple feed forward model employing 10 sigmoidal hidden  units trained with back propogation to get the desired 
result. The output can then  be thresholded to achieve the desired detection and false positive rate by examining the 
receiver operator curves. 

3 .O IMPLEMENTATION 

We evaluated the overall performance of the algorithm using the described target set and  two AVIRIS scenes 
(Cuprite copper mine  in  New Mexico and Midwestern farmland). Based on the target-background composite 
equation (I), we are interested in examining the algorithm’s performance as the size (x) of the target relative to the 
background pixel varies, and as target measurement  and sensor noise (n) changes. 

3.1 METHODOLOGY 

The two scenes consisted of over % of a million pixels of which less than 10% were  used  in developing a set of 
training data. Testing data consisted of randomly  drawn pixels from the remaining scene. Target pixels were 
generated by randomly selecting signatures from the target set and  mixing  them  with arbitrary background pixels. 
The training data was then evaluated with the clustering technique to realize the prototypes (P). Figure 5 shows the 
prototypes generated by a sample clustering and Figure 6 shows the ARM scene segmented with those prototypes. A 
sub-sample of the training data (1000 examples each) was  used to generate the covariance matrixes Ri and Si. The 
generalized eigenvector solutions Wi, to these matrixes were  then  solved  using a Matlab routine. 

Training data for the neural  network  was  again  drawn from the set of training pixels. In addition, a portion of 
the training data for the network was used to halt training (a hold out set) as described in Haykin [Haykin,94]. 
Training of the networks used 5000 examples, ?h target and ?h background pixels. The hold out set consisted of 2500 



examples not trained upon. It is used to stop training in order to prevent over learning on the training data which 
tends to decrease generalization. 
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Figure 5. Example prototypes obtained from 
the clustering algorithm. 

Figure 6. The ARM scene segmented with 
the prototypes found in Figure 5. 

3.1.1 Detection As Target Size Varies 

One of the major goals in this project was  to determine how large the target had  to  be in relation to the pixel. 
For search or characterization scenarios, larger pixels for a given size target represents more ground coverage and 
allows for a wider search to  be conducted in the same amount of time and for the sensor to be on a higher (and 
presumably safer) flying platform. 

In the first experiment, we examined four mixing ratios of target and background. The algorithm was evaluated 
with 16 clusters derived using the unmodified clustering algorithm. No noise  was added to the targets or the 
background pixels. Figure 7 plots the receiver operator curves (detection vs. false positives) for mix percentages of 
2%, 5%, and 10%. 25% target mix resulted in 100% detection (not shown) with no false positives. The plots shown 
consist of averaging the results from 8 of the 16 clusters (over 50,000 pixels sampled). 
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Figure 7. Receiver operator curves for neural network output as mix (x) of target in 
background varies as a percentage of pixel size. 

3.1.2 Adding Noise to the Targets and Sensor 



i 

The filter sets are specifically designed to.minimize the impact of noise in the detection process. However, 
significant noise is bound to impact the detection rates. The next  two figures examine the impact of noise on the 
target set and the sensor. Figure 8 (Left) gives  the receiver operator curves for the original cluster with SNR of 50 
and 10. In this case, Gaussian noise  was added to the background pixel. This simulates poor calibration, noise in 
calculating reflectance, or simple sensor noise. The impact on  the algorithm is substantial at the 5% mix percentage 
shown. 
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Figure 8.  ROC for neural network output as Gaussian noise  is added to background pixel signatures 
(Left) and target signatures (Right). 

Figure 8 (Right) provides the impact of noise degradation on the target set. This represents less than perfect 
knowledge about the target signatures or  its properties. Again, Gaussian noise is added to targets at 10, 20, and 50 
SNR. The impact of noise on the targets is quite modest as compared to the quality of the sensed image. This 
suggests that the investment should be  made  in sensor calibration, noise reduction, and correction procedures rather 
than in collecting more accurate target spectra. 

4.0 CONCLUSION 

A novel detection algorithm and our evaluation methodology are described here. The detection algorithm was 
shown to perform detection at a rate of over 99%  with false positives less than on a set of targets mixed at 10% 
with background pixels. For larger targets, the detection rates approach 100% (at 25% mix, the algorithm was 
perfect). 
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